148 research outputs found

    Is brane cosmology predictable?

    Full text link
    The creation of the inflationary brane universe in 5d bulk Einstein and Einstein-Gauss-Bonnet gravity is considered. We demonstrate that emerging universe is ambigious due to arbitrary function dependence of the junction conditions (or freedom in the choice of boundary terms). We argue that some fundamental physical principle (which may be related with AdS/CFT correspondence) is necessary in order to fix the 4d geometry in unique way.Comment: LaTeX file, 4 page

    A Field Range Bound for General Single-Field Inflation

    Full text link
    We explore the consequences of a detection of primordial tensor fluctuations for general single-field models of inflation. Using the effective theory of inflation, we propose a generalization of the Lyth bound. Our bound applies to all single-field models with two-derivative kinetic terms for the scalar fluctuations and is always stronger than the corresponding bound for slow-roll models. This shows that non-trivial dynamics can't evade the Lyth bound. We also present a weaker, but completely universal bound that holds whenever the Null Energy Condition (NEC) is satisfied at horizon crossing.Comment: 16 page

    Revisiting the calculations of inflationary perturbations

    Get PDF
    We present a new approximation scheme that allows us to increase the accuracy of analytical predictions of the power spectra of inflationary perturbations for two specific classes of inflationary models. Among these models are chaotic inflation with a monomial potential, power-law inflation and natural inflation (inflation at a maximum). After reviewing the established first order results we calculate the amplitudes and spectral indices for these classes of models at higher orders in the slow-roll parameters for scalar and tensorial perturbations.Comment: Extended version of the talk to be published in the proceedings of the Mexican Meeting on Exact Solutions and Scalar Fields in Gravity. Mexico, 1-6 October, 200

    Power-Law Inflation from the Rolling Tachyon

    Get PDF
    Modeling the potential by an inverse square law in terms of the tachyon field (V(T)=βT2V(T)=\beta T^{-2}) we find exact solution for spatially flat isotropic universe.We show that for β>23/3\beta>2\sqrt{3}/3 the model undergoes power-law inflation. A way to construct other exact solutions is specified and exemplified.Comment: References added. Matches the version in print. To appear in PR

    Oscillatory behavior of closed isotropic models in second order gravity theory

    Full text link
    Homogeneous and isotropic models are studied in the Jordan frame of the second order gravity theory. The late time evolution of the models is analysed with the methods of the dynamical systems. The normal form of the dynamical system has periodic solutions for a large set of initial conditions. This implies that an initially expanding closed isotropic universe may exhibit oscillatory behaviour.Comment: 16 pages, 3 figures. With some minor improvements. To appear in General Relativity and Gravitatio

    CMB Power Spectrum from Noncommutative Spacetime

    Full text link
    Very recent CMB data of WMAP offers an opportunity to test inflation models, in particular, the running of spectral index is quite new and can be used to rule out some models. We show that an noncommutative spacetime inflation model gives a good explanation of these new results. In fitting the data, we also obtain a relationship between the noncommutative parameter (string scale) and the ending time of inflation.Comment: 8 pages, 2 figures; v2: refs. added and minor corrections; v3: further minor correctio

    Consistency relation for the Lorentz invariant single-field inflation

    Full text link
    In this paper we compute the sizes of equilateral and orthogonal shape bispectrum for the general Lorentz invariant single-field inflation. The stability of field theory implies a non-negative square of sound speed which leads to a consistency relation between the sizes of orthogonal and equilateral shape bispectrum, namely fNLorth.0.054fNLequil.f_{NL}^{orth.}\lesssim -0.054 f_{NL}^{equil.}. In particular, for the single-field Dirac-Born-Infeld (DBI) inflation, the consistency relation becomes fNLorth.0.070fNLequil.0f_{NL}^{orth.}\simeq 0.070 f_{NL}^{equil.}\lesssim 0. These consistency relations are also valid in the mixed scenario where the quantum fluctuations of some other light scalar fields contribute to a part of total curvature perturbation on the super-horizon scale and may generate a local form bispectrum. A distinguishing prediction of the mixed scenario is τNLloc.>(65fNLloc.)2\tau_{NL}^{loc.}>({6\over 5}f_{NL}^{loc.})^2. Comparing these consistency relations to WMAP 7yr data, there is still a big room for the Lorentz invariant inflation, but DBI inflation has been disfavored at more than 68% CL.Comment: 4 pages, 2 figures; v2: title changed, some mistakes corrected; v3: refs added, version accepted for publication in JCA

    On the thin-shell limit of branes in the presence of Gauss-Bonnet interactions

    Full text link
    In this paper we study thick-shell braneworld models in the presence of a Gauss-Bonnet term. We discuss the peculiarities of the attainment of the thin-shell limit in this case and compare them with the same situation in Einstein gravity. We describe the two simplest families of thick-brane models (parametrized by the shell thickness) one can think of. In the thin-shell limit, one family is characterized by the constancy of its internal density profile (a simple structure for the matter sector) and the other by the constancy of its internal curvature scalar (a simple structure for the geometric sector). We find that these two families are actually equivalent in Einstein gravity and that the presence of the Gauss-Bonnet term breaks this equivalence. In the second case, a shell will always keep some non-trivial internal structure, either on the matter or on the geometric sectors, even in the thin-shell limit.Comment: 17 pages, 2 figures, RevTeX 4. Revised version accepted for publication in Physical Review

    Modern cosmologies from empty Kaluza-Klein solutions in 5D

    Full text link
    We show that the empty five-dimensional solutions of Davidson-Sonnenschtein-Vozmediano, {\em Phys. Rev.} {\bf D32} (1985)1330, in the "old" Kaluza-Klein gravity, under appropriate interpretation can generate an ample variety of cosmological models in 4D, which include the higher-dimensional modifications to general relativity predicted by "modern" versions of noncompactified 5D gravity as, e.g., induced-matter and braneworld theories. This is the first time that these solutions are investigated in a systematic way as embeddings for cosmological models in 4D. They provide a different formulation, which is complementary to the approaches used in current versions of 5D relativity.Comment: Accepted for publication in JHE

    Inflationary cosmology in the central region of String/M-theory moduli space

    Full text link
    The "central" region of moduli space of M- and string theories is where the string coupling is about unity and the volume of compact dimensions is about the string volume. Here we argue that in this region the non-perturbative potential which is suggested by membrane instanton effects has the correct scaling and shape to allow for enough slow-roll inflation, and to produce the correct amplitude of CMB anisotropies. Thus, the well known theoretical obstacles for achieving viable slow-roll inflation in the framework of perturbative string theory are overcome. Limited knowledge of some generic properties of the induced potential is sufficient to determine the simplest type of consistent inflationary model and its predictions about the spectrum of cosmic microwave background anisotropies: a red spectrum of scalar perturbations, and negligible amount of tensor perturbations.Comment: 9 pages, 1 figur
    corecore